Serveur d'exploration Stress et Covid

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Subcellular Localizations of RIG-I, TRIM25, and MAVS Complexes.

Identifieur interne : 000A63 ( Main/Exploration ); précédent : 000A62; suivant : 000A64

Subcellular Localizations of RIG-I, TRIM25, and MAVS Complexes.

Auteurs : M T Sánchez-Aparicio [États-Unis] ; J. Ayll N [États-Unis] ; A. Leo-Macias [États-Unis] ; T. Wolff [Allemagne] ; A. García-Sastre [États-Unis]

Source :

RBID : pubmed:27807226

Descripteurs français

English descriptors

Abstract

The retinoic acid-inducible gene 1 (RIG-I) signaling pathway is essential for the recognition of viruses and the initiation of host interferon (IFN)-mediated antiviral responses. Once activated, RIG-I interacts with polyubiquitin chains generated by TRIM25 and binds mitochondrial antiviral signaling protein (MAVS), leading to the production of type I IFN. We now show specific interactions among these key partners in the RLR pathway through the use of bimolecular fluorescence complementation (BiFC) and super-resolution microscopy. Dimers of RIG-I, TRIM25, and MAVS localize into different compartments. Upon activation, we show that TRIM25 is redistributed into cytoplasmic dots associated with stress granules, while RIG-I associates with TRIM25/stress granules and with mitochondrial MAVS. In addition, MAVS competes with TRIM25 for RIG-I binding, and this suggests that upon TRIM25-mediated activation of RIG-I, RIG-I moves away from TRIM25 to interact with MAVS at the mitochondria. For the first time, the distribution of these three proteins was analyzed at the same time in virus-infected cells. We also investigated how specific viral proteins modify some of the protein complexes in the pathway. The protease NS3/4A from hepatitis C virus redistributes the complexes RIG-I/MAVS and MAVS/MAVS but not RIG-I/TRIM25. In contrast, the influenza A virus NS1 protein interacts with RIG-I and TRIM25 in specific areas in the cell cytoplasm and inhibits the formation of TRIM25 homocomplexes but not the formation of RIG-I/TRIM25 heterocomplexes, preventing the formation of RIG-I/MAVS complexes. Thus, we have localized spatially in the cell different complexes formed between RIG-I, TRIM25, and MAVS, in the presence or absence of two viral IFN antagonistic proteins.

DOI: 10.1128/JVI.01155-16
PubMed: 27807226


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Subcellular Localizations of RIG-I, TRIM25, and MAVS Complexes.</title>
<author>
<name sortKey="Sanchez Aparicio, M T" sort="Sanchez Aparicio, M T" uniqKey="Sanchez Aparicio M" first="M T" last="Sánchez-Aparicio">M T Sánchez-Aparicio</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York</wicri:regionArea>
<placeName>
<region type="state">État de New York</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Ayll N, J" sort="Ayll N, J" uniqKey="Ayll N J" first="J" last="Ayll N">J. Ayll N</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York</wicri:regionArea>
<placeName>
<region type="state">État de New York</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Leo Macias, A" sort="Leo Macias, A" uniqKey="Leo Macias A" first="A" last="Leo-Macias">A. Leo-Macias</name>
<affiliation wicri:level="2">
<nlm:affiliation>The Leon H. Charney Division of Cardiology, New York University School of Medicine (NYU-SoM), New York, New York, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>The Leon H. Charney Division of Cardiology, New York University School of Medicine (NYU-SoM), New York, New York</wicri:regionArea>
<placeName>
<region type="state">État de New York</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Wolff, T" sort="Wolff, T" uniqKey="Wolff T" first="T" last="Wolff">T. Wolff</name>
<affiliation wicri:level="3">
<nlm:affiliation>Division of Influenza Viruses and Other Respiratory Viruses, Robert Koch Institute, Berlin, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Division of Influenza Viruses and Other Respiratory Viruses, Robert Koch Institute, Berlin</wicri:regionArea>
<placeName>
<region type="land" nuts="3">Berlin</region>
<settlement type="city">Berlin</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Garcia Sastre, A" sort="Garcia Sastre, A" uniqKey="Garcia Sastre A" first="A" last="García-Sastre">A. García-Sastre</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA adolfo.garcia-sastre@mssm.edu.</nlm:affiliation>
<country wicri:rule="url">États-Unis</country>
<wicri:regionArea>Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York</wicri:regionArea>
<placeName>
<region type="state">État de New York</region>
</placeName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2017">2017</date>
<idno type="RBID">pubmed:27807226</idno>
<idno type="pmid">27807226</idno>
<idno type="doi">10.1128/JVI.01155-16</idno>
<idno type="wicri:Area/PubMed/Corpus">000337</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">000337</idno>
<idno type="wicri:Area/PubMed/Curation">000336</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Curation">000336</idno>
<idno type="wicri:Area/PubMed/Checkpoint">000305</idno>
<idno type="wicri:explorRef" wicri:stream="Checkpoint" wicri:step="PubMed">000305</idno>
<idno type="wicri:Area/Ncbi/Merge">000825</idno>
<idno type="wicri:Area/Ncbi/Curation">000825</idno>
<idno type="wicri:Area/Ncbi/Checkpoint">000825</idno>
<idno type="wicri:Area/Main/Merge">000A64</idno>
<idno type="wicri:Area/Main/Curation">000A63</idno>
<idno type="wicri:Area/Main/Exploration">000A63</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Subcellular Localizations of RIG-I, TRIM25, and MAVS Complexes.</title>
<author>
<name sortKey="Sanchez Aparicio, M T" sort="Sanchez Aparicio, M T" uniqKey="Sanchez Aparicio M" first="M T" last="Sánchez-Aparicio">M T Sánchez-Aparicio</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York</wicri:regionArea>
<placeName>
<region type="state">État de New York</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Ayll N, J" sort="Ayll N, J" uniqKey="Ayll N J" first="J" last="Ayll N">J. Ayll N</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York</wicri:regionArea>
<placeName>
<region type="state">État de New York</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Leo Macias, A" sort="Leo Macias, A" uniqKey="Leo Macias A" first="A" last="Leo-Macias">A. Leo-Macias</name>
<affiliation wicri:level="2">
<nlm:affiliation>The Leon H. Charney Division of Cardiology, New York University School of Medicine (NYU-SoM), New York, New York, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>The Leon H. Charney Division of Cardiology, New York University School of Medicine (NYU-SoM), New York, New York</wicri:regionArea>
<placeName>
<region type="state">État de New York</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Wolff, T" sort="Wolff, T" uniqKey="Wolff T" first="T" last="Wolff">T. Wolff</name>
<affiliation wicri:level="3">
<nlm:affiliation>Division of Influenza Viruses and Other Respiratory Viruses, Robert Koch Institute, Berlin, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Division of Influenza Viruses and Other Respiratory Viruses, Robert Koch Institute, Berlin</wicri:regionArea>
<placeName>
<region type="land" nuts="3">Berlin</region>
<settlement type="city">Berlin</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Garcia Sastre, A" sort="Garcia Sastre, A" uniqKey="Garcia Sastre A" first="A" last="García-Sastre">A. García-Sastre</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA adolfo.garcia-sastre@mssm.edu.</nlm:affiliation>
<country wicri:rule="url">États-Unis</country>
<wicri:regionArea>Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York</wicri:regionArea>
<placeName>
<region type="state">État de New York</region>
</placeName>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Journal of virology</title>
<idno type="eISSN">1098-5514</idno>
<imprint>
<date when="2017" type="published">2017</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Adaptor Proteins, Signal Transducing (chemistry)</term>
<term>Adaptor Proteins, Signal Transducing (metabolism)</term>
<term>Cell Line</term>
<term>DEAD Box Protein 58 (chemistry)</term>
<term>DEAD Box Protein 58 (metabolism)</term>
<term>Host-Pathogen Interactions</term>
<term>Humans</term>
<term>Immunity, Innate</term>
<term>Intracellular Space</term>
<term>Multiprotein Complexes (metabolism)</term>
<term>Protein Binding</term>
<term>Protein Multimerization</term>
<term>Protein Transport</term>
<term>Signal Transduction</term>
<term>Transcription Factors (chemistry)</term>
<term>Transcription Factors (metabolism)</term>
<term>Tripartite Motif Proteins (chemistry)</term>
<term>Tripartite Motif Proteins (metabolism)</term>
<term>Ubiquitin-Protein Ligases (chemistry)</term>
<term>Ubiquitin-Protein Ligases (metabolism)</term>
<term>Viral Nonstructural Proteins (metabolism)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Complexes multiprotéiques (métabolisme)</term>
<term>Espace intracellulaire</term>
<term>Facteurs de transcription ()</term>
<term>Facteurs de transcription (métabolisme)</term>
<term>Humains</term>
<term>Immunité innée</term>
<term>Interactions hôte-pathogène</term>
<term>Liaison aux protéines</term>
<term>Lignée cellulaire</term>
<term>Multimérisation de protéines</term>
<term>Protéine-58 à domaine DEAD ()</term>
<term>Protéine-58 à domaine DEAD (métabolisme)</term>
<term>Protéines adaptatrices de la transduction du signal ()</term>
<term>Protéines adaptatrices de la transduction du signal (métabolisme)</term>
<term>Protéines virales non structurales (métabolisme)</term>
<term>Protéines à motif tripartite ()</term>
<term>Protéines à motif tripartite (métabolisme)</term>
<term>Transduction du signal</term>
<term>Transport de protéines</term>
<term>Ubiquitin-protein ligases ()</term>
<term>Ubiquitin-protein ligases (métabolisme)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>Adaptor Proteins, Signal Transducing</term>
<term>DEAD Box Protein 58</term>
<term>Transcription Factors</term>
<term>Tripartite Motif Proteins</term>
<term>Ubiquitin-Protein Ligases</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Adaptor Proteins, Signal Transducing</term>
<term>DEAD Box Protein 58</term>
<term>Multiprotein Complexes</term>
<term>Transcription Factors</term>
<term>Tripartite Motif Proteins</term>
<term>Ubiquitin-Protein Ligases</term>
<term>Viral Nonstructural Proteins</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Complexes multiprotéiques</term>
<term>Facteurs de transcription</term>
<term>Protéine-58 à domaine DEAD</term>
<term>Protéines adaptatrices de la transduction du signal</term>
<term>Protéines virales non structurales</term>
<term>Protéines à motif tripartite</term>
<term>Ubiquitin-protein ligases</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Cell Line</term>
<term>Host-Pathogen Interactions</term>
<term>Humans</term>
<term>Immunity, Innate</term>
<term>Intracellular Space</term>
<term>Protein Binding</term>
<term>Protein Multimerization</term>
<term>Protein Transport</term>
<term>Signal Transduction</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Espace intracellulaire</term>
<term>Facteurs de transcription</term>
<term>Humains</term>
<term>Immunité innée</term>
<term>Interactions hôte-pathogène</term>
<term>Liaison aux protéines</term>
<term>Lignée cellulaire</term>
<term>Multimérisation de protéines</term>
<term>Protéine-58 à domaine DEAD</term>
<term>Protéines adaptatrices de la transduction du signal</term>
<term>Protéines à motif tripartite</term>
<term>Transduction du signal</term>
<term>Transport de protéines</term>
<term>Ubiquitin-protein ligases</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The retinoic acid-inducible gene 1 (RIG-I) signaling pathway is essential for the recognition of viruses and the initiation of host interferon (IFN)-mediated antiviral responses. Once activated, RIG-I interacts with polyubiquitin chains generated by TRIM25 and binds mitochondrial antiviral signaling protein (MAVS), leading to the production of type I IFN. We now show specific interactions among these key partners in the RLR pathway through the use of bimolecular fluorescence complementation (BiFC) and super-resolution microscopy. Dimers of RIG-I, TRIM25, and MAVS localize into different compartments. Upon activation, we show that TRIM25 is redistributed into cytoplasmic dots associated with stress granules, while RIG-I associates with TRIM25/stress granules and with mitochondrial MAVS. In addition, MAVS competes with TRIM25 for RIG-I binding, and this suggests that upon TRIM25-mediated activation of RIG-I, RIG-I moves away from TRIM25 to interact with MAVS at the mitochondria. For the first time, the distribution of these three proteins was analyzed at the same time in virus-infected cells. We also investigated how specific viral proteins modify some of the protein complexes in the pathway. The protease NS3/4A from hepatitis C virus redistributes the complexes RIG-I/MAVS and MAVS/MAVS but not RIG-I/TRIM25. In contrast, the influenza A virus NS1 protein interacts with RIG-I and TRIM25 in specific areas in the cell cytoplasm and inhibits the formation of TRIM25 homocomplexes but not the formation of RIG-I/TRIM25 heterocomplexes, preventing the formation of RIG-I/MAVS complexes. Thus, we have localized spatially in the cell different complexes formed between RIG-I, TRIM25, and MAVS, in the presence or absence of two viral IFN antagonistic proteins.</div>
</front>
</TEI>
<affiliations>
<list>
<country>
<li>Allemagne</li>
<li>États-Unis</li>
</country>
<region>
<li>Berlin</li>
<li>État de New York</li>
</region>
<settlement>
<li>Berlin</li>
</settlement>
</list>
<tree>
<country name="États-Unis">
<region name="État de New York">
<name sortKey="Sanchez Aparicio, M T" sort="Sanchez Aparicio, M T" uniqKey="Sanchez Aparicio M" first="M T" last="Sánchez-Aparicio">M T Sánchez-Aparicio</name>
</region>
<name sortKey="Ayll N, J" sort="Ayll N, J" uniqKey="Ayll N J" first="J" last="Ayll N">J. Ayll N</name>
<name sortKey="Garcia Sastre, A" sort="Garcia Sastre, A" uniqKey="Garcia Sastre A" first="A" last="García-Sastre">A. García-Sastre</name>
<name sortKey="Leo Macias, A" sort="Leo Macias, A" uniqKey="Leo Macias A" first="A" last="Leo-Macias">A. Leo-Macias</name>
</country>
<country name="Allemagne">
<region name="Berlin">
<name sortKey="Wolff, T" sort="Wolff, T" uniqKey="Wolff T" first="T" last="Wolff">T. Wolff</name>
</region>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/StressCovidV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000A63 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000A63 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    StressCovidV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:27807226
   |texte=   Subcellular Localizations of RIG-I, TRIM25, and MAVS Complexes.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:27807226" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a StressCovidV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Wed May 6 16:44:09 2020. Site generation: Sun Mar 28 08:26:57 2021